uproot.behaviors.TProfile.Profile
Defined in uproot.behaviors.TProfile on line 132.
| Inheritance order: | 
|---|
- class uproot.behaviors.TProfile.Profile
- Abstract class for profile plots. 
name
Inherited from uproot.behaviors.TH1.Histogram.
- Profile.name
- The name of the histogram. 
title
Inherited from uproot.behaviors.TH1.Histogram.
- Profile.title
- The title of the histogram. 
axes
Inherited from uproot.behaviors.TH1.Histogram.
- Profile.axes
- A tuple of all uproot.behaviors.TAxis.TAxis objects. 
axis
Inherited from uproot.behaviors.TH1.Histogram.
- Profile.axis(axis)
- Returns a specified uproot.behaviors.TAxis.TAxis object. - The - axiscan be specified as- a non-negative integer: - 0is the first axis,- 1is the second, and- 2is the third.
- a negative integer: - -1is the last axis,- -2is the second-to-last, and- -3is the third-to-last.
- a string: - "x"is the first axis,- "y"is the second, and- "z"is the third
 - (assuming that the histogram dimension supports a given - axis).
weighted
Inherited from uproot.behaviors.TH1.Histogram.
- Profile.weighted
- True if the histogram has weights ( - fSumw2); False otherwise.
kind
Inherited from uproot.behaviors.TH1.Histogram.
- Profile.kind
values
Inherited from uproot.behaviors.TH1.Histogram.
- Profile.values(flow=False)
- Parameters:
- flow (bool) – If True, include underflow and overflow bins before and after the normal (finite-width) bins. 
 - Mean value of each bin as a 1, 2, or 3 dimensional - numpy.ndarrayof- numpy.float64.- Setting - flow=Trueincreases the length of each dimension by two.
errors
Inherited from uproot.behaviors.TH1.Histogram.
- Profile.errors(flow=False, error_mode='')
- Parameters:
- flow (bool) – If True, include underflow and overflow bins before and after the normal (finite-width) bins. 
- error_mode (str) – Choose a method for calculating the errors (see below). 
 
 - Errors (uncertainties) in the values as a 1, 2, or 3 dimensional - numpy.ndarrayof- numpy.float64.- The calculation of profile errors exactly follows ROOT’s function, but in a vectorized NumPy form. The - error_modemay be- ""for standard error on the mean
- "s"for spread
- "i"for integer data
- "g"for Gaussian
 - following ROOT’s profile documentation. - Setting - flow=Trueincreases the length of each dimension by two.
variances
Inherited from uproot.behaviors.TH1.Histogram.
- Profile.variances(flow=False, error_mode='')
- Parameters:
- flow (bool) – If True, include underflow and overflow bins before and after the normal (finite-width) bins. 
- error_mode (str) – Choose a method for calculating the errors (see below). 
 
 - Variances (uncertainties squared) in the values as a 1, 2, or 3 dimensional - numpy.ndarrayof- numpy.float64.- The calculation of profile variances exactly follows ROOT’s function, but in a vectorized NumPy form. The - error_modemay be- ""for standard error on the mean (squared)
- "s"for spread (squared)
- "i"for integer data (squared)
- "g"for Gaussian (squared)
 - following ROOT’s profile documentation. - Setting - flow=Trueincreases the length of each dimension by two.
counts
Inherited from uproot.behaviors.TH1.Histogram.
- Profile.counts(flow=False)
- Parameters:
- flow (bool) – If True, include underflow and overflow bins before and after the normal (finite-width) bins. 
 - The effective number of entries, which is a step in the calculation of values. The calculation of profile errors exactly follows ROOT’s “effective entries”, but in a vectorized NumPy form. 
to_boost
Inherited from uproot.behaviors.TH1.Histogram.
- Profile.to_boost(metadata=None, axis_metadata=None)
- Parameters:
- metadata (dict of str → str) – Metadata to collect (keys) and their C++ class member names (values). 
- axis_metadata (dict of str → str) – Metadata to collect from each axis. 
 
 - Converts the histogram into a - boost-histogramobject.
to_hist
Inherited from uproot.behaviors.TH1.Histogram.
- Profile.to_hist(metadata=None, axis_metadata=None)
- Parameters:
- metadata (dict of str → str) – Metadata to collect (keys) and their C++ class member names (values). 
- axis_metadata (dict of str → str) – Metadata to collect from each axis. 
 
 - Converts the histogram into a - histobject.